前回の記事、 mizumiya-umi.hatenablog.com の続きです。 無限に続く数列の積を見ていきましょう。 {1,1,1,1,……}と、1が延々と続いていく数列を、#という記号で表すことにします。 #={1,1,1,1,……} としたということです。 #^2、つまり#と#の積は、 {1,2,3,4,…
この記事では、項数が有限の数列を、そのあとに0という数の入った項が無限に続く数列と見なして扱うことにします。 nを自然数、a[n],b[n]を整数とします。 さて、 {a[1],a[2],a[3],a[4],……}という無限に続く数列と、 {b[1],b[2],b[3],b[4],……}という無限に続…
aを実数とする。 ( a -a)(-a a) という形で表せるすべての二次正方行列の集合は、通常の(行列の)加法と乗法に関して体になるらしいことに気付きました。 この体の乗法の単位元は、 ( 1/2 -1/2)(-1/2 1/2) です。 一般のn次正方行列でも同様のことが言えるよ…
前回の記事、 mizumiya-umi.hatenablog.com では二次正方行列を考えましたが、これをn次正方行列に一般化できるらしいことに気付きました。 まず3次正方行列を見ていきます。 a,b,c,x,y,zを実数とし、a+b+c=1,x+y+z=1となっているとします。 (a b c)(c a b)(…
a,bを実数とする。 ( a 1-a)(1-a a) の形で書けるすべての二次正方行列の集合は、乗法に関して可換群になります。 また、この集合において、 ( a 1-a)(1-a a) と ( b 1-b)(1-b b) の和を、 ( a+b-1/2 -a-b+3/2)(-a-b+3/2 a+b-1/2) と定義すると、加法に関し…
aを自然数とする。 f(0)=1,f(1)=1,f(x)+a×f(x+1)=f(x+2) とf(x)を定義し、 g[x]を0,1,2,……,aのうちのいずれかの数になっているとする。 すべての自然数は、 g[1]×f(1)+g[2]×f(2)+…+g[n]×f(n) (nは自然数) の形で表せるだろうと予想しました。 さらに、g[k]=a…
a,b,cを整数、nを自然数の定数とする。 a^2+n×b^2=c^2 となっているとするとき、 s=2(a+nb-c)/n とすると、 (s-a)^2+n×(s-b)^2=(s-c)^2 となっているだろうと予想しました。 つまり、平方と平方のn倍の和が平方になっているような3つの数の組があるとき、こ…
a,b,cを整数とし、 a^2+b^2=c^2 となっているとき、 s=2(a+b-c) とすると、 (s-a)^2+(s-b)^2=(s-c)^2 となっていて、このような操作を二重ピタゴラス操作と呼ぶことにしたのでした。 さて、x,y,zを整数、nを任意の整数の定数とするとき、 x^2+y^2+n=z^2 つま…
a[1],a[2],……,a[n]というn個の0以上の整数の和が、bという自然数の平方になるとします。 つまり、 a[1]^2+a[2]^2+……+a[n]^2=b^2 となっているということです。 このようなa[1],……,a[n],bの組を、一つの組から新たに見つけることのできるような計算をおそらく…
まず分数の和を書きます。 a,cを0でない実数、b,dを実数とするとき、 b/a+d/c=(ad+bc)/ac となっています。 この演算と同じ結果が出るような行列を見つけました。 二次正方行列Xを (a b)(0 a) とし、 二次正方行列Yを (c d)(0 c) とするとき、 行列の積X×Y及…
a,b,cを既約ピタゴラス数、つまり、 a^2+b^2=c^2となるような既約な自然数とします。 また、aを奇数、bを偶数とします。 A^2+B^2=C^2となるような二次正方行列A,B,Cを、ピタゴラス二次行列と呼ぶことにします。 ピタゴラス二次行列を、ピタゴラス数から作れ…
mizumiya-umi.hatenablog.com ↑に貼った記事に書いた計算法で、 自然数a[1],b[1],c[1],a[2],b[2],c[2]が a[1]^2+b[1]^2=c[1]^2 a[2]^2+b[2]^2=c[2]^2 を満たすピタゴラス数とするとき、平方数が現れるのでした。 a[1],a[2]を奇数、b[1],b[2]を偶数とし、既約…
pを奇素数とし、 nを2n+1=pとなるような自然数とする mod pにおいて、nと(n+1)をふたつ隣りに並べたものを頂点とするようなパスカルの三角形を計算すると、全ての整数が一度ずつ現れる行が出てくるようだと思いました。証明はできていません。 例を挙げます …
通常でない和と積を定義して行列の体を作ることができるようなので投稿します。 まず、この記事で定義する和を巻和、積を巻積と呼ぶことにします。ネーミングに特に深い意味はないです。区別をしたほうが分かりやすいと思ったので名付けました。 これから二…
↓この記事の続きです。 mizumiya-umi.hatenablog.com ↑に貼った記事では、右!操作、左!操作というものを考えましたが、上!操作、下!操作というものもできることに気付きました。 要領は右!操作、左!操作のときと同じで、 (a b)(c d) という行列を、 (a…
↓この記事を読んでからのほうが分かりやすいかもしれません。 mizumiya-umi.hatenablog.com 二次正方行列を (a c)(b d) というように書くことにする。 a,b,dを自然数、cを0以上の整数、a≦b、c<d、ad-bc=1とするとき、 a/bとc/dはいずれかのファレイ数列で隣…
↓この記事を読んでからのほうが分かりやすいかもしれません。 mizumiya-umi.hatenablog.com 二次正方行列を (x y)(z w) というように書くことにします。 pを素数とします。 mod pにおいて、 aF[n]+bF[n+1]=F[n+2]となっているF[n]の、一番長いループの長さと…
二次正方行列を (a b)(c d) というように書くことにします。三次以上の行列も同様に書くことにします。 (0 1)(1 1) や、 (0 0 1)(0 1 1)(1 2 1) や、 (0 0 0 1)(0 0 1 1)(0 1 2 1)(1 3 3 1)というような、パスカルの三角形のような数の並びをもつ正方行列と…
二次正方行列を (a b)(c d) という形で書くことにする mod 5において、 (0 0) (1 3) (3 4) (4 2) (2 1)(0 0) (4 2) (2 1) (1 3) (3 4) という5個の正方行列の集合は、 (0 0)(0 0)を加法の単位元、 (2 1)(3 4)を乗法の単位元とする体になることに気付きました…
nを自然数とする。 数列F[n]を、 F[0]=0,F[1]=1,F[n-1]+F[n]=F[n+1] と定義する。つまりF[n]はフィボナッチ数列です。 互いに素な自然数a,bを、 F[n-1]/F[n]+F[n]/F[n+1]=a/b と定義するとき、 a+b=F[2n+1] a-b=(F[n-1])^2 となっていると予想しました。 例…
a,b,cを自然数とする。 aとbのフィボナッチ積をa〇bと書くことにする。 (a〇(b+c))と(a〇b+a〇c)の差は、0かaかのどちらかに必ずなるのではないかと思いました。 普通の加法とフィボナッチ積の間に、分配法則のようなものが成り立っているのではないかと思っ…
九九の表のように、フィボナッチ積の表を七の段まで書いて眺めていたら思いついたことがあるので書きます。 nを自然数とする n番目のフィボナッチ数をF[n](ただし1=F[2]とする)とする また、aとbのフィボナッチ積をa〇bと書くことにする。 kを自然数とすると…
フィボナッチ積という概念のトリボナッチ数列版を考えてみました。 mizumiya-umi.hatenablog.com で書いたように、トリボナッチ数列から3つ以上連続しないように項を選び、和をとることで、すべての自然数を一意的に表せるだろうと予想しました。 この予想を…
a,b,c,d,e,fを a^2+b^2=c^2 d^2+e^2=f^2 となっているような自然数、つまりピタゴラス数とします。 更に、a,dを奇数、b,eを偶数、c,fを奇数として話を進めます。 実は、 n^2+( (a+d) /2)^2+( (b+e) /2)^2=( (c+f) /2)^2、 (ad+n^2)+(be+n^2)=(cf-n^2)+n^2 と…
pを素数とし、 m乗するとxになる数を(m)√(x)という表記で書くことにし、 kを(p-1)と互いに素な整数の定数とします。 g(0)=0 g(1)=1 (k)√(g(n)^k+g(n+1)^k)=g(n+2) で定義される数列g(n)と、 フィボナッチ数列のmod pでのループの長さが一致すると予想しまし…
pを素数とします。 m乗するとxになる数を、(m)√(x)という表記で書くことにします。 nを(p-1)と互いに素な整数の定数とします。 演算◇を、a◇b=(n)√(a^n+b^n)と定義するとき、 mod pにおける{0,1,2,……,p-1}という集合は、演算◇に関して位数pの巡回群になります…
pを素数とし、a,bをmod pで0でない整数とする。 以下の等式はすべてmod pで考える。 nを整数とする。 af(n)+bf(n+1)=f(n+2),f(0)=0,f(1)=1で定義される一般フィボナッチ数列f(n)の、nを0より大きくしていき、最初にf(n)=0,f(n+1)=1となるようなnをf(n)のルー…
pを素数、nを2以上の自然数とします。 mod pにおけるある既約n次多項式の根を生成元とする乗法巡回群に0という元を含めたものが、元の個数がp^n個の体になるだろうと予想しました。 既約n次多項式の根であっても体になるような集合を作れないものもあります…
pを素数とし、 nを、pの倍数であり、p^2の倍数でない自然数とするとき、 mod nにおいて{0,n/p,2n/p,……,(p-1)n/p}という集合が体になることに気付きました。 具体例を書きます。 n=21,p=7、つまり、 mod 21において{0,3,6,9,12,15,18}という集合が体になるこ…
nを2以上の自然数、a,bを整数とする mod n^2において、 anとbnの和が(a+b)nになることと、(an+1)と(bn+1)の積が((a+b)n+1)になることが、似ていることに気付きました。 つまり、 {0,n,2n,……,(n-1)n} (mod n^2)という加法群と、 {1,n+1,2n+1,……,((n-1)n+1)}(m…