明るい夜のまばたき

数が降る街

数学で考えたことを書いています

三角錐数に対応する数の敷き詰め

三角錐数とは、三角数を小さい順に足したもののことです。

三角数とは、自然数を小さい順に足したもののことです。

自然数を小さい順に並べると、

1,2,3,4,5,6,7,8,9,10,……

となり、

三角数を小さい順に並べると

1,3,6,10,15,21,28,36,45,55,……

となり、

三角錐数を小さい順に並べると

1,4,10,20,35,56,84,120,165,220,……

となります。

三角数三角錐数についてはWikipediaにも詳しく書いてあるので、気になった方は見てみるのも良いと思います。

 

では、三角錐数に対応する数の敷き詰めの説明をしていきたいと思います。一応僕が考えました。

と言っても、簡単な敷き詰めです。

一番左下のマスを一行一列目とし、m行n列目(m,nは自然数)にはmnを入れる、というだけです。

実際に書くと下のような敷き詰めになっています。

 


6 12 18 24 30 36
5 10 15 20 25 30
4  8 12 16 20  24
3  6  9  12 15  18
2  4  6   8  10  12
1  2  3   4   5    6

 

左上から右下を45度の角度で通る直線を考え、その直線を上にずらしていき、それぞれの直線が通る数の総和を求めていくと三角錐数が表れます。

 

具体的に計算すると

1

2+2=4

3+4+3=10

4+6+6+4=20

5+8+9+8+5=35

6+10+12+12+10+6=56

となり、確かに三角錐数が小さい順に表れました。

 

思いついた内容は以上です。これから証明を書きます。

と言っても、ほとんど計算するだけです。

下からn番目の直線の上にある数の総和はn×1+(n-1)×2+(n-2)×3+(n-3)×4+……+2×(n-1)+1×nと書くことができ、これをシグマにして計算すると、n番目の三角錐数を表すn(n+1)(n+2)/6が表れるというだけです。

 

 

個人的に、とても不思議だなぁと思う結果です。数学は不思議な生き物。

拡張したものとかもあるのかな、と思い、考えていますが、なかなか思いつきません。思いついた方いたら、良ければ教えてください。